
40. L. Kaufman and M. Cohen, "Thermodynamics and kinetics of martensite transitions," Usp. 
Fiz. ~tallov, No. 4, 192 (1961). 

41. A. Kelly and G. W. Groves, Crystallography and Crystal Defects, Addison-Wesley (1970). 
42. A. L. Roitbrud, "Current state of the theory of martensite transitions," in: Investiga- 

tion c f Crystalline Structure and Martensite Transitions [in Russian], Nauka, Moscow 
(1972). 

43. V. N. German, M. P. Speranskaya, L. V. Al'tshuler, and L. A. Tarasova, "Investigation of 
the structure of monocrystals of iron silicate deformed by strong shock waves," Fiz. 
Met. Metalloved., 30, No. 3, 1018 (1970). 

44. H. Knapp and U. Dehlinger, "Mechanics and kinetics of diffusionless martensite transi- 
tion," Acta Metallurg., ~, 289 (1956). 

45. O. N. Breusov, "Phase transitions caused by shock compression," in: Proceedings of the 
All-Union Symposium on Pulsed Pressures [in Russian], Vol. 2, Moscow (1974), p. 18. 

46. D. E. Grady, W. Y. Murry, and P. S. DeCarly, "Hugoniot sound velocities and phase trans- 
formations in two silicates," J. Geophys. Res., 80, No. 5, 4857 (1975). 

SHOCK WAVES IN DILATANT AND NONDILATANT MEDIA 

S. G. Artyshev and S. Z. Dunin UDC 622.235.5+539.3+539.214 

With the explosion of a charge in an isotropic brittle medium at rest and compressed by 
a lithostatic pressure Ph, a shock wave starts to propagate outward from the center of the 
explosion. A step-by-step analysis of the character of the breakdown as a function of the 
properties of the rock and the lithostatic pressure is given in [1-3], where the breakdown 
of the rock is described without taking account of the dilatant character of the behavior of 
the medium, i.e., without taking account of the possibility of a change in the volumetric de- 
formation with shear [4]. 

The present article discusses the possibility of the propagation of a spherically symme- 
trical breakdown wave in dilatant and nondilatant plastic media. 

The source of the breakdown wave, located in a spherical cavity (cavern) with an initial 
radius ao, is a gas having an initial pressure Pko" It is assumed that the Prandtl plasti- 
city condition is satisfied behind the front of the wave: 

~ - -  % = k § m(~,  + 2%),  (!) 

where k and m are known constants; c r and a ~ are the stresses in a radial direction and in 
directions orthogonal to it, respectively. The flow of the rock behind the front is described 
by the equations of the convservation of momentum and mass and the equation of dilatancy: 

p(Ou/Ot + uOu/Or) = Oa~/Or + 2(a, - -  o~)/r; (2) 

OplOt + uOp/Or + p(Ou/Or + 2u/r) = 0; (3) 

Ou/Or ~ 2u/r = A(p, 5~)lOu/Or - -  u/r]., (4) 

w h e r e  p i s  t h e  d e n s i t y  o f  t h e  medium; u i s  t h e  mass  v e l o c i t y ;  r i s  t he  r a d i u s ;  t i s  t h e  t i m e ;  
and  A(p,  g r )  i s  t h e  r a t e  o f  d i l a t a n c y  [ 4 ] .  At t h e  f r o n t  o f  t h e  b reakdown  wave ,  t h e  c o n d i t i o n s  
o f  t h e  c o n s e r v a t i o n  o f  mass  and momentum a r e  a d o p t e d :  

uf(t) = sf(t)R(t); (5) 

pf(t) - -  Ph = Poe~t)R2(t), (6) 

where R(t) and R(t) are the radius and the velocity of the front; Ph = 9.81.poh is the litho- 
static pressure at the depth h; ef = 1 -- Po/P is the discontinuity of the density at the f 
front; and pf =--of is the pressure at the front. Here and in what follows the subscript 
f denotes values of the quantities at the front, while the subscript 0 denotes values in the 
unperturbed medium. 
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It is convenient to write Eqs. (2)-(4) in Lagrangian variables (ro, t). Denoting the 
new unknown functions of the variables (ro, t) by the same letters u, p, Or, and r, taking 
account of (i) we obtain that the following equations are satisfied in the region behind the 
front [t > t~(ro), where t~(ro) is a function inverse to the function R(t)]: 

OroO[ r ~  _ = p o r ~ r ~ - 2  a___~. 

or r~ Oo. ( 8 )  
Or o r ~ p ' 

A~t In (Pr~) + O-~- In P = O' (9) 

where ~ = 6m/(2m + I); p(ro, t) =--Or(ro , t). 

The equation of dilatancy (9) was obtained under the assumption that ~u/Sr ~ 0 in (4). 

We make two additional assumptions, which allow us to go over from equations in partial 
derivatives to an ordinary differential equation. 

i. The rate of dilatancy A is a constant. Then Eq. (9) assumes the form 

.2_o (pA+,r3:9 = O, 
at 

which can be integrated explicitly: 

( r0 ~-~ 
9 (ro, t) = ,of (t~ (to)) ~ (ro,t)J ' ( l O )  

where n = (2--h)/(l + A). 

Integration of (8) gives 
R(t) 

R '~+~ (t) - -  r '~+~ (ro, t) = (n + t )  9o . o f  (t~ (g/) d L  
ro 

(11) 

from which it follows that 

u (to, t~ Or (to, t) ( R (t) ,~n/~ (t). (12)  
, - -  - - N - -  = s f (t) \ ,  (to, t)] 

The rock being broken down attains its limiting compression at the front, i.e., ef(t) = 
const [5]. In this case, Eq. (ii) goes over into 

r n+i (r o, t) = (1 - -  el) r~ +i + e fR n+t (t), (13)  

and  t h e  f o r m u l a  (10)  f o r  t h e  d e c r e a s e  i n  d e n s i t y  Of t h e  medium can  be  w r i t t e n  i n  t e r m s  o f  
Euler coordinates: 

where 

p ( r , t ) = - - ~ - - [ l - - e f k - - - f - ]  ] , 

1 

((1 - e l )  a~ + i  + e r r  "+1 (t)) n+l  ~< r < R (t). 

We introduce the dimensionless quantities r = t/8, Xo = ro/ao, y(xo, T) = r(aoXo, 
ao, Y(T) = R(~T)/ao, and ~(Xo,~) = p(aoXo, 

(ao, m; Po, g/cm3; Pko, kbar; 
taking account of (12), (13), 

~ ) 1  
~T)!Pko, where as the unit of time we take 

/ -  .t0 Po 

8, msec). After integration in the limits from ro to R(t), 
(5), and (6), Eq. (7) assumes the form 

X o  " ~ -- (14) 
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where 
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xo/Y 
1 

z(~)  = (~f + (t - ~f~ ['~+~)'*+'; 
i 

Xo/Y 

Xo t 
C (Xo, J) - ~f Pho 

I. k t 0 _ 3 ;  
c, ef 3rap~ o 

(k, kg/em2; h, m). 

Setting Xo = 1 and assigning the law of the change in the pressure ~(I, r) in the ex- 
plosion cavity, Eq. (14) can be used as the differential equation with respect to the dimen- 
sionless radius of the front Y(T). Under these circumstances, the initial data will be 

,(o,= 
P1~o ]" 

After finding Y(T), Eq. (14) makes it possible to calculate the pressure w(xo, T) over the 
whole zone through which the wave has passed, I~ xo~Y(T). 

In the present work, the condition in the explosion cavity was taken in two forms: 

a ( l ,  T) = (ao/r(a  o, 0 aY -=- y-a? ( i ,  T);. ( 1 5 )  

which corresponds to the postulation of adiabatic expansion of the cavity with a constant 
adiabat Y [6], and on the basis of an experimentally established dependence from [7], which, 
in our notation, has the form 

where t r is a constant (msec). 

Figures 1-4 give some results of calculations, obtained for the following initial data 
[7]: pk o = 62 kbar; m = 0.45; k = 0.35 kg/cm=; 0o = 2.5 g/cm3; h = i000 m; cf = 0.2; ao = 
7 m; Y = 1.5; t r = 2 msec; and A = 0.14 or A = 0. The dependencies of the radii of the front 
R and the cavity a on the time t are given in Fig. I, where the solid lines correspond to the 
boundary condition (15) and the dashed lines to the boundary condition (16). Here and in 
what follows, the letter D relates to the case where the dilatancy is taken into considera- 
tion (h # 0). The decrease in the density of the broken rock due to dilatancy is illustrated 
in Fig. 2; the curves i and i' relate to the moment of time 2.7 msec; 2 and 2' relate to 10.8 
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msec; 3 and 3' relate to 26 msec. Curves 1-3 correspond to the boundary condition (15) and 
1'-3' to the boundary condition (16). The radial stress o r as a function of the Euler coor- 
dinate r is shown in Fig. 3 for boundary condition (15) and in Fig. 4 for boundary condition 
(16). In Fig. 3, curves i and ID relate to the moment of time 0.9 msec; 2 and 2D relate to 
9.9 msec; and 3 and 3D relate�9 to 22.5 msec. In Fig. 4, the corresponding times are equal to 
0.9, 2.7, and 16.2 msec. 

Calculations showed that, starting from some moment of time, an internal zone of super- 
compression is formed in the dispersed rock (the maximum on curves 2, 3, and 3D of Fig. 3 and 
on curves 2, 2D, 3, and 3D of Fig. 4). This phenomenon is observed numerically both taking 
account and not taking account of dilatancy. As can be seen,�9 account of dilatancy 
leads to a rise in the velocity of the front and to a decrease in the rate of expansion of 
the cavity (see Fig. i), as well as to an increase of the pressure in the rock (see Figs. 3 
and 4). The decrease in the density due to dilatancy can reach considerable proportions (up 
to 30% of the pressure at the front, Fig. 2). 

Calculations made for other values of Pko, ~f, Y, and A gave approximately the same qual- 
itative result. 

The authors wish to express their thanks to B. L. Rozhdestvenskii, E. E. Lovetskii, and 
V. K. Sirotkin for their evaluation of and interest in the work. 
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